Recognizing and Diagnosing Peripheral Arterial Disease (P.A.D.)

A Clinical Introduction
The information provided in this presentation was created at the direction of and with monetary support from ev3 Endovascular, Inc. All rights to this presentation are owned by ev3 Endovascular, Inc. Any reproduction or use of the contents of this presentation without ev3 Endovascular, Inc.’s permission is strictly prohibited. Should you wish to use or reproduce any portion of this presentation, please contact MarketingCommunications@ev3.net at ev3 Endovascular, Inc.

This presentation was co-authored with Ofstead & Associates, Inc., Dr Alan Hirsch and ev3 Inc.
A Clinical Introduction to P.A.D.

- This presentation covers the following P.A.D. topics:
 - Overview
 - Risk factors and epidemiology
 - Clinical presentation
 - Clinical outcomes and comorbid conditions
 - Early detection and diagnosis
 - Treatment options
 - Economic costs
 - Specialty concerns
 - Call to action

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Overview of Peripheral Arterial Disease (P.A.D.)

- All non-coronary arterial diseases
- P.A.D.:
 - Causes acute and chronic illness
 - Reduces functional capacity and quality of life
 - Causes limb amputations
 - Increases risk of death

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
P.A.D. Nomenclature

- P.A.D. is **Peripheral Arterial Disease**
- P.A.D. is a disease that has been called many names:
 - PVD (peripheral vascular disease)
 - PAOD (peripheral arterial occlusive disease)
 - LEP.A.D. (lower extremity peripheral arterial disease)
 - Arteriosclerosis obliterans

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Atherosclerosis and P.A.D.

- Manifestation of a systemic disease
- Buildup of plaque
 - Cholesterol and other fats
 - Calcium
 - Fibrous tissue
 - Other substances
- Arterial stenosis or occlusion
- Reduced blood flow
- Increased risk of cardiovascular events and death
Risk Factors for P.A.D.

- **Lifestyle**
 - Smoking
 - Obesity

- **Health conditions**
 - Diabetes
 - Cardiovascular disease
 - Erectile dysfunction
 - Chronic kidney disease
 - Hypertension
 - Hyperlipidemia

- **Demographics**
 - Older age
 - Black race

More than half of the attributable risk of P.A.D. is due to smoking and diabetes.
Smoking and P.A.D.

• More than 80% of persons with P.A.D. are current or former smokers
• Smoking increases the risk of P.A.D. 4-fold
• P.A.D. in smokers:
 o Develops 10 years earlier
 o More likely to progress
 o Worse outcomes
 ■ Double the risk of amputation
 ■ Poor survival rates

“Smoking is the single most important modifiable risk factor for prevention of P.A.D.”
Smoking and P.A.D.

Smoking introduces lead and cadmium into the body

Higher levels of these metals increase the risk of P.A.D. almost 3 times

Licensed from Shutterstock, 2010

The information provided in this presentation was created with monetary support from ev# Endovascular, Inc.
Smoking and P.A.D.

The risk of P.A.D. is dose-dependent

Risk and severity of P.A.D. increase with the number of cigarettes and years smoked
30%-40% of persons with P.A.D. are current smokers

80%-90% of persons with P.A.D. who require revascularization are current smokers
Diabetes and P.A.D.

- 25%-40% of persons with P.A.D. have diabetes
- Risk of P.A.D. is 2-4 times higher
- Risk increases in proportion to diabetes severity and duration
- P.A.D. in persons with diabetes:
 - Commonly asymptomatic
 - More severe and progresses rapidly
 - Worse outcomes
 - Ulceration and gangrene
 - Amputation
 - Cardiovascular events

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Diabetes and P.A.D.

1 in 3 persons over age 50 with diabetes is likely to have P.A.D.
Diabetes, P.A.D., and Amputation

- Diabetes alone does not cause amputation—it increases the risk of P.A.D.

- P.A.D. and diabetes are the leading cause of non-traumatic, lower limb amputations

- P.A.D. patients with diabetes have a 7-15 times higher risk of amputation

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Prevalence of P.A.D. and Cancer in the U.S.

P.A.D. affects the same number of Americans as cancer.

P.A.D. affects 8-12 million Americans.

Cancer affects 11 million Americans.
5-Year Mortality Rates for P.A.D. and Breast Cancer in the U.S.

P.A.D.
15%-30%

Breast Cancer
11%
Prevalence of P.A.D. Among Older Adults

- The prevalence of P.A.D. increases dramatically with age
- 12%–20% of persons aged 65 or older have P.A.D.

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Expansion of the Older Population

Millions of Americans aged 65 and older by year

Orange indicates millions with P.A.D.

<table>
<thead>
<tr>
<th>Year</th>
<th>Millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>35.0</td>
</tr>
<tr>
<td>2010</td>
<td>40.2</td>
</tr>
<tr>
<td>2020</td>
<td>54.8</td>
</tr>
<tr>
<td>2030</td>
<td>72.0</td>
</tr>
<tr>
<td>2040</td>
<td>81.2</td>
</tr>
<tr>
<td>2050</td>
<td>88.5</td>
</tr>
</tbody>
</table>
Clinical Presentation of P.A.D.

<table>
<thead>
<tr>
<th>P.A.D. Status</th>
<th>Rate of Clinical Presentation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td>20%-50%</td>
</tr>
<tr>
<td>▪ No leg pain</td>
<td></td>
</tr>
<tr>
<td>Atypical leg pain</td>
<td>40%-50%</td>
</tr>
<tr>
<td>▪ Leg discomfort with exertion</td>
<td></td>
</tr>
<tr>
<td>Claudication</td>
<td>10%-35%</td>
</tr>
<tr>
<td>▪ Leg muscle discomfort with exertion</td>
<td></td>
</tr>
<tr>
<td>Critical limb ischemia (CLI)</td>
<td>1%-2%</td>
</tr>
<tr>
<td>▪ Chronic leg pain at rest</td>
<td></td>
</tr>
<tr>
<td>▪ Nonhealing ulcers and gangrene</td>
<td></td>
</tr>
<tr>
<td>Acute limb ischemia (ALI)</td>
<td>NA</td>
</tr>
<tr>
<td>▪ Sudden onset of leg pain</td>
<td></td>
</tr>
</tbody>
</table>
Asymptomatic P.A.D.

- More than 50% do not have classical signs or symptoms

- Asymptomatic patients:
 - Subtle impairments of limb function
 - Risk factors and comorbidities comparable to symptomatic patients

- Symptoms may not occur in patients who do not perform sufficient activity to produce them

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Claudication and P.A.D.

• Claudication is the most common symptom of P.A.D.
 - Cramping, aching, fatigue, weakness, or pain
 - Involving the muscles of the buttocks, legs, or feet
 - Occurs with activity
 - Quickly relieved by rest

• Present in only about 10% of P.A.D. patients

• Claudication alone does not define the presence or absence of P.A.D.
P.A.D. Patient are at Increased Risk

- Impaired function and quality of life
- Progressive disease severity
- Amputation
- Cardiovascular ischemic events
- Cardiovascular mortality
Loss of Functional Independence with P.A.D.

Independence is valued in all stages of life and in all cultures.

P.A.D. limits physical activity and can result in isolation.
Comorbid Conditions Associated with P.A.D.

• Atherosclerotic diseases:
 o Coronary artery disease (CAD; MI)
 o Cerebrovascular disease (CVD; stroke)
 o Aortic aneurysmal disease (rupture)
 o Erectile dysfunction

• Chronic kidney disease (CKD)
• Diabetes

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Cardiovascular Disease and P.A.D.

• Coprevalence of cardiovascular disease among P.A.D. patients:

- CVD: 25%-50%
- CAD: 50%-80%
- Renal: 25%-40%
Cardiovascular Events and P.A.D.

- P.A.D. patients have:
 - 40% increased risk of a cerebrovascular event (stroke)
 - 20%-60% increased risk of a heart attack (MI)
 - 2-6-fold increased risk of death due to coronary events
70%-80% of P.A.D. patients die of cardiovascular causes

<table>
<thead>
<tr>
<th>P.A.D. Status</th>
<th>Annual mortality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients with P.A.D.</td>
<td>4%-6%</td>
</tr>
<tr>
<td>Acute limb ischemia (ALI)</td>
<td>15%-20%</td>
</tr>
<tr>
<td>Critical limb ischemia (CLI)</td>
<td>20-25%</td>
</tr>
<tr>
<td>CLI & amputation</td>
<td>45%</td>
</tr>
</tbody>
</table>

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Importance of Early Detection

• P.A.D. is underdiagnosed
 ■ Over $\frac{2}{3}$ are asymptomatic or have atypical symptoms
 ■ $\frac{1}{2}$ have not yet suffered a major cardiovascular event

• Early detection can identify individuals:
 ■ Without claudication
 ■ With atypical leg symptoms
 ■ At high cardiovascular risk

• Initiate risk reduction treatment
Identify Persons at High Risk

<table>
<thead>
<tr>
<th>Age</th>
<th>>70 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifestyle</td>
<td>Smokers</td>
</tr>
<tr>
<td></td>
<td>• >50 years</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Diabetes</td>
</tr>
<tr>
<td></td>
<td>• >50 years</td>
</tr>
<tr>
<td></td>
<td>• Other risk factors</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td></td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Leg pain with exertion</td>
</tr>
<tr>
<td></td>
<td>Leg pain at rest</td>
</tr>
<tr>
<td></td>
<td>Walking impairment</td>
</tr>
<tr>
<td></td>
<td>Nonhealing wounds</td>
</tr>
</tbody>
</table>

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Clinical Assessment for P.A.D.

- Clinical History & Vascular Review
 - Vascular history
 - Limb symptoms
 - Atherosclerotic risk factors
 - Comorbid conditions

- Physical examination of the legs, feet, and toes
 - Weak or absent peripheral pulses
 - Signs of limb ischemia

- Laboratory testing and ABI
Noninvasive Diagnostic Tests for P.A.D.

- Universally indicated diagnostic tests:
 - Ankle-brachial index (ABI)
 - Toe-brachial index (TBI)
 - Substitute or supplement for ABI

- Reimbursement for the ABI depends on using appropriate:
 - Equipment
 - Coding

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Measuring the ABI

<table>
<thead>
<tr>
<th>1. Take 6 measurements with patient in supine position</th>
<th>2. Select higher values for calculating ABI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Left arm</td>
<td>Systolic blood pressure (mm Hg)</td>
</tr>
<tr>
<td>2. Right arm</td>
<td></td>
</tr>
<tr>
<td>Left ankle:</td>
<td></td>
</tr>
<tr>
<td>3. Dorsalis pedis</td>
<td></td>
</tr>
<tr>
<td>4. Posterior tibial</td>
<td></td>
</tr>
<tr>
<td>Right ankle:</td>
<td></td>
</tr>
<tr>
<td>5. Dorsalis pedis</td>
<td></td>
</tr>
<tr>
<td>6. Posterior tibial</td>
<td></td>
</tr>
</tbody>
</table>

To perform the ABI, use a 10-12 cm blood pressure cuff and a handheld 5- or 10-mHz Doppler probe.

Calculating and Interpreting the ABI

ABI Calculation

Left ABI:

\[
\frac{\text{Higher left ankle pressure}}{\text{Higher arm pressure}} = \text{ABI}
\]

Right ABI:

\[
\frac{\text{Higher right ankle pressure}}{\text{Higher arm pressure}} = \text{ABI}
\]

Interpretation (Arterial Status)

<table>
<thead>
<tr>
<th>ABI</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1.30</td>
<td>Noncompressible</td>
</tr>
<tr>
<td>1.00-1.29</td>
<td>Normal</td>
</tr>
<tr>
<td>0.91-0.99</td>
<td>Borderline (equivocal)</td>
</tr>
<tr>
<td>0.41-0.90</td>
<td>Mild to Moderate P.A.D.</td>
</tr>
<tr>
<td>0.00-0.40</td>
<td>Severe P.A.D.</td>
</tr>
</tbody>
</table>

P.A.D. is defined as an ABI of ≤0.90

Value of the ABI Test

• Detects P.A.D. at all stages
• 95% sensitive and nearly 100% specific
• Confirms the diagnosis of P.A.D.
• Lower ABIs:
 ■ Higher cardiovascular risk
 ■ Greater disease severity
 ■ Worse prognosis for limb and life
• Most cost-effective tool for P.A.D. detection

The ABI is the gold standard for diagnostic P.A.D. testing

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Current guidelines endorsed by the American Heart Association (AHA), the American College of Cardiology (ACC), and international vascular societies recommend:

- ABI testing for all patients with a history or exam indicative of P.A.D. (i.e., high risk patients)

Patients at High Risk for P.A.D.

<table>
<thead>
<tr>
<th>Age</th>
<th>>70 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifestyle</td>
<td>Smokers</td>
</tr>
<tr>
<td></td>
<td>• >50 years</td>
</tr>
<tr>
<td>Comorbid conditions</td>
<td>Diabetes</td>
</tr>
<tr>
<td></td>
<td>• >50 years</td>
</tr>
<tr>
<td></td>
<td>• Other risk factors</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td></td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Leg pain with exertion</td>
</tr>
<tr>
<td></td>
<td>Leg pain at rest</td>
</tr>
<tr>
<td></td>
<td>Walking impairment</td>
</tr>
<tr>
<td></td>
<td>Nonhealing wounds</td>
</tr>
</tbody>
</table>
• Supportive diagnostic tests to determine anatomy, physiology, or functional status:
 o Segmental pressure measurements
 o Pulse volume recordings (PVR)
 o Doppler waveform measurements
 o Transcutaneous oxygen tension
 o Exercise ABI testing
 o Vascular imaging
 ■ Duplex ultrasound
 ■ Angiography (CTA, MRA)
Treatment of P.A.D.

- Treatment goals are to:
 - Reduce the risk of death and cardiovascular events
 - Prevent limb loss
 - Relieve symptoms
 - Improve function and quality of life

- Cardiovascular risk reduction therapy is indicated for all patients
 - Risk factor modification
 - Antiplatelet therapy

- Symptomatic treatment is individualized

Only 20%-30% of patients with P.A.D. are receiving treatment
Lifestyle Modifications to Treat P.A.D.

- Risk reduction:
 - Smoking cessation
 - Risk factor modification:
 - Lipid control
 - Blood pressure control
 - Diabetes control
 - Weight reduction
 - Exercise
 - Nonatherogenic diet

- Lifelong treatment
Medications for Treating P.A.D.

- **Risk reduction**
 - Statins
 - ACE inhibitors
 - Antiplatelet therapy
 - Aspirin
 - Clopidogrel
- **Symptom relief**
 - Claudication
 - Cilostazol
 - CLI
 - Pain medication
 - Antibiotics

Lifelong antiplatelet therapy is recommended for patients with P.A.D. You need to decide what is best for your patient.

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Exercise Therapy to Treat P.A.D.

- **Exercise program**
 - Walking is most effective
 - Exercise-rest-exercise

- **Sessions performed for:**
 - Minimum of 30-45 minutes
 - At least 3 times per week
 - Minimum of 3 months

- **Walking outcomes:**
 - Relief from claudication
 - Increase in walking ability and daily activity
 - Risk reduction
Revascularization and P.A.D.

• **Indications:**
 - Failure with exercise and drug therapy
 - Lifestyle-limiting symptoms and function
 - Nonhealing wound
 - Risk of amputation

• Requires a favorable risk/benefit ratio

• Less invasive endovascular procedures:
 - Preferred over surgery
 - Preserve options for fall-back surgical procedures
• **Mechanism:**

 - Catheter-guided balloon

 - Balloon dilation

 - Plaque displacement into the artery wall

 - Vessel stretch and expansion
Endovascular P.A.D. Treatment – Stents and Stent-Grafts

• **Mechanism:**

 o Balloon-expandable or self-expanding

 o Plaque displacement into the artery wall

 o Vessel stretch and expansion

• **Indications:**

 o Prevent recoil of the artery wall

 o Repair complications resulting from angioplasty
Endovascular P.A.D. Treatment – Atherectomy

- **Mechanism:**
 - Debulk plaque
 - Cut
 - Pulverize
 - Shave
 - Remove or excise plaque

- **Types:**
 - Directional or excisional
 - Rotational or orbital
 - Photoablative (excimer laser)

Source: Garcia et al. (2009)
Surgical Treatment for P.A.D.

• Types:
 o Surgical bypass
 ■ Venous or synthetic bypass graft
 o Endarterectomy
 ■ Surgical removal of plaque
 o Intra-operative hybrid procedure

• Not recommended as prophylactic therapy

• Increased risk of operative mortality
Amputation and P.A.D.

- About 5% undergo amputation
- Indications:
 - Failed revascularization (~60%)
 - Refractory ischemic rest pain
 - Gross infection
 - Extensive necrosis
- High incidence in persons with diabetes
- Significant risk of morbidity and mortality
- Up to 85% of amputations are preventable

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Personal Costs of Major Amputation

- Less than half of amputees regain the ability to walk
- 15% require amputation of the other limb within 2 years
- Amputees have a 20%-35% risk of MI, stroke, and infection
- Less than half of amputees survive more than 2-3 years
Economic Costs of Major Amputation

• Annual costs associated with amputation are $10-20 billion in the U.S.

• Post-amputation care costs $50,000 per patient annually

• Nursing home care costs $100,000 per patient
P.A.D. accounts for approximately:
- 750,000 office visits
- 63,000 hospitalizations

Total hospitalization costs in excess of $21 billion
- 57% of costs due to revascularization and amputation

Average annual costs of P.A.D. are greater than CAD and CVD:
- $4,000 for hospitalization
- $2,800 for medication

Costs increase with additional cardiovascular disease
Treatment Costs for P.A.D.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA</td>
<td>$10,000</td>
</tr>
<tr>
<td>PTA & thrombolysis</td>
<td>$20,000</td>
</tr>
<tr>
<td>Bypass grafting</td>
<td>$20,000</td>
</tr>
<tr>
<td>Amputation</td>
<td>$40,000</td>
</tr>
<tr>
<td>Adding rehabilitation</td>
<td>Cost x2</td>
</tr>
<tr>
<td>Failed procedure</td>
<td>Cost x2-4</td>
</tr>
</tbody>
</table>

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
P.A.D. Costs and Medicare

- 98% of U.S. adults over age 65 are covered by Medicare
- 6.8% of beneficiaries received P.A.D. treatment
 - Accounts for only 1/3 of estimated P.A.D. population
- Medicare expenditures for P.A.D.:
 - $1,868 average annual treatment cost per patient
 - 88% of costs due to inpatient care
 - 2.3% of total Medicare budget
- $4.37 billion in treatment costs

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Billions in Medicare Expenditures

- Cardiac dysrhythmias: 2.7 billion
- Cerebrovascular disease: 3.7 billion
- P.A.D.: 3.9 billion
- Congestive heart failure: 3.9 billion
Call to Action for Leaders and Administrators

1. Increase awareness of P.A.D. and its consequences (amputation, MI, stroke, and death)
2. Determine coding and reimbursement for diagnostic P.A.D. testing
3. Promote ABI testing and risk reduction therapy to improve patient outcomes
4. Develop a list of referral physicians including vascular specialists and podiatrists
1. Use medical history and recognize risk factors
2. Perform ABI testing on high risk patients to increase early diagnosis
3. Manage risk factors promptly and aggressively
4. Implement multidisciplinary care or make the appropriate referrals
5. Maintain the continuity of care

Peripheral artery disease (P.A.D.) is underrecognized, underdiagnosed, and undertreated in the U.S.
References

• Bell D. Peripheral arterial disease overview: Here are some guidelines for prevention and treatment of this disease. Pod Mgmt. Apr/May 2009:210-220.
References

Smolderen KG, Aquarius AE, de Vries J. Depressive symptoms in peripheral arterial disease: a follow-up study on prevalence, stability, and risk factors. J Affect Disord. Sep 2008;110(1-2);27-35.

Copyright Information for Images

- Images licensed from Shutterstock may be used for up to 250,000 viewings.

13981702 Image Copyright Sebastian Kaulitzki, 2010
43424656 Image Copyright gaga, 2010
1499081 Image Copyright aaleksander, 2010
46449469 Image Copyright ansar80, 2010
40740250 Image Copyright xbjxhxm123, 2010
53033977 Image Copyright -=MadDog=-, 2010
2431461 Image Copyright Slobodan Dijic, 2010
28665994 Image Copyright 0833379753, 2010
35840110 Image Copyright GWImages, 2010
35955373 Image Copyright Vikulin, 2010
1774401 Image Copyright Rob Byron, 2010
3448453 Image Copyright Dwight Smith, 2010
17586670 Image Copyright Cleo, 2010
27533122 Image Copyright Oliver Klimek, 2010
15728149 Image Copyright Monkey Business Images, 2010
3679666 Image Copyright Brittany Bastian, 2010
3541137 Image Copyright Alexander Raths, 2010
17103757 Image Copyright Monkey Business Images, 2010
1104141 Image Copyright Lou Oates, 2010
13981699 Image Copyright Sebastian Kaulitzki, 2010
53297275 Image Copyright Sebastian Kaulitzki, 2010
53297290 Image Copyright Sebastian Kaulitzki, 2010
53297266 Image Copyright Sebastian Kaulitzki, 2010
11129668 Image Copyright ariadna de raad, 2010
13714876 Image Copyright Oscar C. Williams, 2010
6339859 Image Copyright Alexander Raths, 2010
43400224 Image Copyright SomeSun, 2010
26780440 Image Copyright Igor Shikov, 2010
35904019 Image Copyright Lisa F. Young, 2010
26939917 Image Copyright Monkey Business Images, 2010
40667596 Image Copyright Nagy Melinda, 2010
39285835 Image Copyright Yuri Arcurs, 2010
12499432 Image Copyright Monkey Business Images, 2010
3542291 Image Copyright Kuzma, 2010
2431461 Image Copyright Monkey Business Images, 2010
39735553 Image Copyright Yuri Arcurs, 2010
39735565 Image Copyright Yuri Arcurs, 2010
37050526 Image Copyright Smit, 2010
400404 Image Copyright Jacqueline Shaw, 2010
55305025 Image Copyright auremar, 2010
39734968 Image Copyright Yuri Arcurs, 2010
18502465 Image Copyright AVAVA, 2010
9543043 Image Copyright Diego Cervo, 2010
25406743 Image Copyright StockLite, 2010
26939812 Image Copyright Monkey Business Images, 2010
45768595 Image Copyright Bork, 2010
7806397 Image Copyright Patricia Hofmeester, 2010
39873484 Image Copyright Monkey Business Images, 2010
39734932 Image Copyright Yuri Arcurs, 2010
15922855 Image Copyright Gary Blakeley, 2010

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Copyright Information for Images

- Images licensed from Shutterstock may be used for up to 250,000 viewings.

- 5859715 Image Copyright Rey Kamensky, 2010
- 53990452 Image Copyright gemphotography, 2010
- 12485275 Image Copyright Svanblar, 2010
- 22875925 Image Copyright Sebastian Kaulitzki, 2010
- 2997394 Image Copyright Jorge Salcedo, 2010
- 1763693 Image Copyright aceshot1, 2010
- 26945083 Image Copyright Monkey Business Images, 2010
- 52799650 Image Copyright mangostock, 2010
- 9585979 Image Copyright Andi Berger, 2010
- 45287170 Image Copyright Andy Dean Photography, 2010
- 49361347 Image Copyright Sean Prior, 2010
- 14464558 Image Copyright Monkey Business Images, 2010
- 41903698 Image Copyright vadim kozlovsky, 2010
- 42439225 Image Copyright Sean Prior, 2010
- 46389259 Image Copyright Morgan Lane Photography, 2010
- 14464525 Image Copyright Monkey Business Images, 2010
- 2741657 Image Copyright carlosseller, 2010
- 20290003 Image Copyright Yuri Arcurs, 2010
- 2321781 Image Copyright Stefan Ataman, 2010
- 16691659 Image Copyright Jeff Banke, 2010
- 13643485 Image Copyright Sebastian Kaulitzki, 2010
- 26945005 Image Copyright Monkey Business Images, 2010
- 22262242 Image Copyright Picsfive, 2010
- 43351369 Image Copyright GONUL KOKAL, 2010
- 3347258 Image Copyright Balancici, 2010
- 34065367 Image Copyright Alexander Raths, 2010
- 56860867 Image Copyright ruzanna, 2010
- 3455975 Image Copyright beerkoff, 2010
- 43524862 Image Copyright Yuri Arcurs, 2010

- Images licensed from Mediscan may be used through August 1, 2015.

- 007379 Image Copyright Mediscan, 2010
- 021413 Image Copyright Mediscan, 2010
- 000245 Image Copyright Mediscan, 2010
- 001982 Image Copyright Mediscan, 2010
- 025661 Image Copyright Barry Slaven/Mediscan, 2010

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Copyright Information for Images

- Images licensed from Custom Medical Stock Photo may be used for the life of this presentation.

 Z801-J-3157 Image Copyright Science Photo Library – Custom Medical Stock Photo, 2010
 Z050-HH-62 Image Copyright Ribotsky D.P.M. – Custom Medical Stock Photo, 2010
 Z801-J-3156 Image Copyright Science Photo Library – Custom Medical Stock Photo, 2010
 Z801-J-3041 Image Copyright Simon Fraser/Science Photo Library – Custom Medical Stock Photo, 2010
 Z800-L-3344 Image Copyright Science Photo Library – Custom Medical Stock Photo, 2010
 Z050-HH-63 Image Copyright Ribotsky D.P.M. – Custom Medical Stock Photo, 2010
 Z801-S-2248 Image Copyright Science Photo Library – Custom Medical Stock Photo, 2010
 Z050-HH-16 Image Copyright Ribotsky D.P.M. – Custom Medical Stock Photo, 2010
 Z109-E-344 Image Copyright John Smith – Custom Medical Stock Photo, 2010
 Z264-S-1997 Image Copyright Wedgworth – Custom Medical Stock Photo, 2010

- Additional licensed images

 58219 Image Copyright PhotoDisc® Volume 58—Mature Lifestyles 2, 1999
 103002, 103035-44, 103046-48, 103054, 103057, 103062-63, 103067, 103087-88, 103091 Image Copyright PhotoDisc® Volume 103—Senior Lifestyles, 2001
 347009, 374079 Image Copyright digitalvision®—Autograph Series: Young At Heart

The information provided in this presentation was created with monetary support from ev3 Endovascular, Inc.
Copyright Information for Illustrations

• Illustrations (3792_300EWT, 3794_300EWT) licensed from A.D.A.M. Images may be used through June 25, 2011.

• Illustrations (BY00008, si55551835) licensed from Nucleus Medical Media may be used through June 25, 2012.